Estimation of Travel Time Distributions in Urban Road Networks Using Low-Frequency Floating Car Data
نویسندگان
چکیده
Travel times in urban road networks are highly stochastic. However, most existing travel time estimation methods only estimate the mean travel times, while ignoring travel time variances. To this end, this paper proposes a robust travel time distribution estimation method to estimate both the mean and variance of travel times by using emerging low-frequency floating car data. Different from the existing studies, the path travel time distribution in this study is formulated as the sum of the deterministic link travel times and stochastic turning delays at intersections. Using this formulation, distinct travel time delays for different turning movements at the same intersection can be well captured. In this study, a speed estimation algorithm is developed to estimate the deterministic link travel times, and a distribution estimation algorithm is proposed to estimate the stochastic turning delays. Considering the low sampling rate of the floating car data, a weighted moving average algorithm is further developed for a robust estimation of the path travel time distribution. A real-world case study in Wuhan, China is carried out to validate the applicability of the proposed method. The results of the case study show that the proposed method can obtain a reliable and accurate estimation of path travel time distribution in congested urban road networks.
منابع مشابه
Travel Time Estimation Using Floating Car Data
This project explores the use of machine learning techniques to accurately predict travel times in city streets and highways using floating car data (location information of user vehicles on a road network). The aim of this report is twofold, first we present a general architecture of solving this problem, then present and evaluate few techniques on real floating car data gathered over a month ...
متن کاملHeterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous ...
متن کاملUsing Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, the...
متن کاملFloating Car Data: Travel Time Estimation in Urban Networks
Floating Car Data (FCD) is becoming a more and more popular technique for travel time measurements in road networks. Nevertheless, FCD is a sampling technique which requires controlling the statistical properties of link travel times to obtain accurate estimations. Based on microsimulation outputs, this paper shows which parameters play a key role in the travel time estimation accuracy, particu...
متن کاملA Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data
Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017